当前位置:肿瘤瞭望>资讯>正文

国际前沿丨EGFR、ALK和ROS1 TKI的分子耐药机制

作者:肿瘤瞭望   日期:2021/7/27 14:18:06  浏览量:7466

肿瘤瞭望版权所有,谢绝任何形式转载,侵犯版权者必予法律追究。

EGFR激活突变和ALK、ROS1重排的发现开启了晚期非小细胞肺癌(NSCLC)的精准医疗时代,研究快速进步,靶向药物相继研发。

EGFR激活突变和ALK、ROS1重排的发现开启了晚期非小细胞肺癌(NSCLC)的精准医疗时代,研究快速进步,靶向药物相继研发。然而,大多数携带EGFR、ALK、ROS1基因组变异的肿瘤患者,靶向治疗可获得持久但并非无限期的获益。TKI耐药机制分为酪氨酸激酶获得性变异“在靶”机制或其他分子变异介导的“脱靶”耐药机制。

 
文章作者:耶鲁癌症中心血液学和肿瘤内科临床研究员Michael J. Grant, MD、耶鲁大学癌症中心病理学和医学副教授Katerina Politi, PhD

1、EGFR-TKI的耐药机制
 
奥希替尼是第三代EGFR抑制剂,正在日益成为晚期、初治EGFR突变NSCLC患者的标准治疗,也被批准用于治疗EGFR T790M介导的第一代和第二代EGFR-TKI的耐药患者。尽管奥希替尼在以上适应证中有效,但肿瘤缓解的持久性有限,获得性耐药不可避免。几个患者队列的分析表明,尽管脱靶分子耐药机制占主导地位,但奥希替尼耐药的机制可能是异质性的。这些耐药机制包括MET或HER2扩增、RAS-MAPK或RAS-PI3K通路的激活、细胞周期基因改变和继发性致癌融合事件[涉及RET、NTRK、ALK或BRAF]。1,2,3 多达15%的患者在一线或后线奥希替尼治疗后疾病进展时可发生鳞状或SCLC组织学转化。
 
一代和二代EGFR-TKI耐药通常是由获得性EGFR T790M突变引起(约50%~60%);奥希替尼耐药在一小部分病例中是EGFR依赖性的耐药机制(范围6%~38%)。1,2 在靶耐药机制的主要原因是EGFR激酶域外显子的额外获得性突变,最常见的是C797S/G,但也有G796S/R、L792F/H、L718Q/V和G724S。1
 
有趣的是,新数据表明以上突变中,一些突变对第一、二代EGFR-TKI敏感,预示着TKI序贯或联合治疗有助于克服奥希替尼耐药。4,5 同样重要的是,治疗线数(一线 vs. 后线)可能对奥希替尼获得性耐药产生影响。1,2,5 因此,确定奥希替尼耐药的分子驱动因素,对于开发起始治疗联合策略(例如:奥希替尼+第一代EGFR-TKI [NCT03122717]或第二代TKI [NCT03810807]),以期延迟、预防常见耐药机制是至关重要的。最后,对奥希替尼的获得性耐药性进行分析,有助于研究疾病进展后的个性化疗法(例如ORCHARD试验[NCT03944772])以及下一代TKI的研发。6

2、ALK-TKI的耐药机制
 
对于ALK重排的晚期NSCLC,二代ALK-TKI被广泛接受为一线标准,因为二代TKI与克唑替尼相比可改善PFS、中枢神经系统活性,毒性特征更有利。7,8在二代ALK-TKI疾病进展后,ALK激酶结构域的外显子获得性耐药突变更为常见,在超过50%病例中引发耐药,而克唑替尼治疗疾病进展时,这一比例为20%~30%。9此外,继发性ALK激酶突变谱因既往TKI暴露情况而不同。对于二代ALK-TKI色瑞替尼、艾乐替尼和布加替尼,ALK G1202R是疾病进展时出现的最常见突变;然而,携带这种突变的肿瘤仍对第三代TKI劳拉替尼敏感。10,11 事实上,当出现ALK TKI耐药突变时,可以采用量身定制的后续治疗方案,其方案取决于既往TKI暴露和具体的耐药突变。ALK Master Protocol是一项由美国国家癌症研究所赞助的试验,旨在研究二代ALK-TKI治疗后疾病进展的患者,如何基于生物标志物选择治疗方案(NCT03737994)。
 
脱靶通路激活并非第二代ALK-TKI耐药的常见原因,但在某些情况下,脱靶通路激活所致耐药可进行靶向治疗,例如EGFR通路激活和MET扩增所致耐药。9组织学转化(例如上皮细胞-间充质转化、鳞状细胞癌和小细胞转化)所致耐药已有报道,但仅为孤立病例。10,12-14 最后,III期CROWN试验最近证明,劳拉替尼在既往未接受过全身治疗的ALK重排NSCLC患者中疗效优于克唑替尼,导致美国食品药品监督管理局(FDA)批准了该适应症。15,16一线劳拉替尼的应用仍有待观察,但二线和三线劳拉替尼治疗的独特耐药机制(包括新型复合ALK突变和NF2功能丧失突变)已被报道。17

3、ROS1-TKI的耐药机制
 
ROS1重排NSCLC对TKI的耐药性在克唑替尼时代开展了大量研究,然而最近批准的I型ROS1 TKI(即恩曲替尼和劳拉替尼)的耐药模式又开始出现。18在克唑替尼耐药肿瘤中,临床上已发现ROS1激酶结构域外显子的继发突变。19,20其中最常见的是G2032R,其不仅会导致对克唑替尼耐药,还会导致对其他抑制剂(包括恩曲替尼和劳拉替尼)耐药。针对G2032R,下一代ROS1/TRK/ALK抑制剂已观察到有前景的临床前活性(repotrectinib和taletrectinib)和早期临床疗效(repotrectinib21)18。劳拉替尼可以靶向克唑替尼耐药相关的其他激酶突变,包括S1986F、S1986Y和L1951R,后者也对恩曲替尼敏感。18对于I型ROS1抑制剂治疗进展的肿瘤患者,II型ROS1抑制剂(例如卡博替尼)可能具有活性,尽管这种“药物类型转换”策略需要进一步研究。
 
ROS1-TKI的脱靶耐药机制不太常见,包括上皮-间质转化;SCLC转化;KRAS、NRAS、BRAF、PIK3CA、CTNNB1或KIT的突变;MET扩增;以及转向EGFR依赖性信号传导。20-26
 
对于携带致癌驱动因素的肺癌患者,耐药后的突变或可靶向治疗(actionable)。组织学转化是EGFR-TKI、ALK-TKI和ROS1-TKI耐药的原因。因此,采用DNA下一代测序、RNA测序进行组织活检以及组织学评估仍然是综合耐药机制分析的标准。尽管基于血浆的二代测序缺乏捕获组织学信息的能力,并且需要有足够的肿瘤脱落来发现循环DNA,但患者出现系统进展后,血浆二代测序可有效地反映肿瘤中的病灶间异质性。对于所有EGFR突变、ALK/ROS1重排的NSCLC患者,应在TKI治疗进展时进行组织活检和分子分析和/或无细胞DNA检测(当无法进行组织活检时),因为理想情况下,我们可根据分析所获信息来定制后续治疗方案。
 
随着EGFR突变、ALK/ROS1重排NSCLC的护理标准不断变革,收集患者的组织和血浆用于临床和转化研究非常重要,如果可能,我们可以将患者纳入临床试验,以评估疾病进展时的管理策略。
 
参考文献
1.a. b.  c. d. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725-737.
2. a. b. c. Schoenfeld AJ, Chan JM, Kubota D, Sato H, et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin Cancer Res. 2020;26(11):2654-2663.
3. Piper-Vallillo AJ, Sequist LV, Piotrowska Z. Emerging treatment paradigms for EGFR-mutant lung cancers progressing on osimertinib: a review. J Clin Oncol. 2020 June 18. [Epub ahead of print].
4. Brown BP, Zhang Y-K, Westover DK, et al. On-target resistance to the mutant-selective EGFR inhibitor osimertinib can develop in an allele-specific manner dependent on the original EGFR-activating mutation. Clin Cancer Res. 2019;25(11):3341-3351.
5. a. b. Starrett JH, Guernet AA, Cuomo MA, et al. Drug sensitivity and allele specificity of first-line osimertinib resistance EGFR mutations. Cancer Res. 2020;80(10):2017-2030.
6. To C, Jang J, Chen T, et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 2019;9(7):926-943.
7. Mok T, Camidge DR, Gadgeel SM, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056-1064 .
8. Camidge DR, Kim HR, Ahn M-J, et al. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the phase III ALTA-1L trial. J Clin Oncol. 2020;38(31):3592-3603.
9. a. b. Lin JJ, Riely GJ, Shaw AT. Targeting ALK: precision medicine takes on drug resistance. Cancer Discov. 2017;7(2):137-155.
10. a.  b. Gainor JF, Dardaei L, Yoda S,et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118-1133.
11. Shaw AT, Solomon BJ, Besse B, et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol. 2019;37(16):1370-1379.
12. Park S, Han J, Sun JM. Histologic transformation of ALK-rearranged adenocarcinoma to squamous cell carcinoma after treatment with ALK inhibitor. Lung Cancer. 2019;127:66-68.
13. Takegawa N, Hayashi H, Izuka N, et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann Oncol. 2016;27(5):953-955.
14. Fujita S, Masago K, Katakami N, Yatabe Y. Transformation to SCLC after treatment with the ALK Inhibitor Alectinib. J Thorac Oncol. 2016;11(6):e67-72.
15. Shaw AT, Bauer TM, de Marinis F, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med. 2020;383(21):2018-2029.
16. Recondo G, Mezquita L, Facchinetti F, et al. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin Cancer Res. 2020;26(1):242-255.
17. Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol. 2021;18(1):35-55.
18. a. b. c. Gainor JF, Tseng D, Yoda S, et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol. 2017. [Epub ahead of print].
19. Cho BC, Drilon AE, Doebele RC, et al. Safety and preliminary clinical activity of repotrectinib in patients with advanced ROS1 fusion-positive non-small cell lung cancer (TRIDENT-1 study). J Clin Oncol. 2019;37(15)(suppl):9011.
20. a. b. McCoach CE, Le AT, Gowan K, et al. Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin Cancer Res. 2018;24(14):3334-3347.
21. Lin JJ, Langenbucher A, Gupta P, et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. NPJ Precis Oncol. 2020;4:21.
22. Zhu YC, Lin X-P, Li X-F, et al. Concurrent ROS1 gene rearrangement and KRAS mutation in lung adenocarcinoma: a case report and literature review. Thorac Cancer. 2018;9(1):159-163.
23. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-282.
24. Song A, Kim TM, Kim D-W, et al. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin Cancer Res. 2015;21(10):2379-2387.
25. Lin JJ, Johnson T, Lennerz JK, et al. Resistance to lorlatinib in ROS1 fusion-positive non-small cell lung cancer. J Clin Oncol. 2020;38(15)(suppl):9611.
26. Davies KD, Mahale S, Astling DP, et al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One. 2013;8(12):e82236.

版面编辑:洪江林  责任编辑:张彩琴

本内容仅供医学专业人士参考


肺癌

分享到: 更多